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Abstract
In order to enable widespread integration of solar energy into the power system, there is an increasing need to
reduce the uncertainty associated with solar power output which requires major improvements in solar irradiance
forecasting. While most recent works have addressed short-term (minutes or hours ahead) forecasting, through
this work, we propose using deep sequence learning models for forecasting at longer lead-times such as a week in
advance, as this can play a significant role in future power system storage applications. Along with point forecasts,
we also produce uncertainty estimates through probabilistic prediction and showcase the potential of our machine
learning frameworks for a new and important application of longer lead-time forecasting in this domain. Our
study on the SURFRAD data over seven US cities compares various deep sequence models and the results are
encouraging, demonstrating their superior performance against most benchmarks from the literature and a current
machine learning based probabilistic prediction baseline (previously applied to short-term solar forecasting).

Impact Statement
We show the promise of machine learning for longer-term solar forecasting with probabilistic predictions, an
area that has not been sufficiently explored in the literature. Our encouraging results suggest such methods
could play a larger role in future power system operations, when greater shares of renewable energy resources
will require operational planning at these timescales. For example, these methods could inform the operation
of hybrid power plants with storage capabilities, where information about expected future renewable power
generation would weigh into decisions on storage charging and discharging.

1. Introduction
Renewable energy sources, like solar, wind, tidal, or geothermal energy, have the potential of reducing
the world’s dependency on fossil fuel. These resources are not only abundantly available in nature but
they are also clean energy sources, reducing greenhouse gas emissions that lead to global warming.
However, many of these resources are variable and uncertain, posing challenges for integration into
a power system which is predicated upon dispatchable supply. There is therefore a growing need for
accurate renewable energy forecasting to ease integration into electric grids. Solar photovoltaics (PV)
systems are experiencing exponential growth in deployment and the output of PV systems is highly
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dependent on solar irradiance [1]. A number of physical and statistical models have been used for
making solar forecasts at different timescales from intra-hour to a few days-ahead [19, 21]. Statistical
methods have been shown to perform well at forecasting at very short time horizons, with numerical
weather prediction models (NWP) outperforming them in the hours to days-ahead timeframe [19].

Most physical models in this domain are based on NWP simulations that traditionally provide
more accurate forecasts at hours to days-ahead lead times [19]. However, due to their computational
expense, NWP model outputs are updated less frequently and with coarser resolution at longer pre-
diction lead times, such as week(s) ahead. This motivates the need for data-driven machine learning
models that can provide forecasts at longer periods in advance at a finer (1 hour) resolution (as opposed
to e.g., the 12 hour resolution in the case of the European Centre for Medium-Range Weather Forecasts
(ECMWF) model predictions). As a part of our study, we not only perform a direct comparison with
the NWP baseline for our one-week ahead forecasts, but we also evaluate our models’ performance
when they incorporate NWP outputs as input features to see if it improves their forecasting ability.

Figure 1. Fan plot showing the Temporal CNN (TCN)
model’s prediction intervals from 5% to 95% percentile
on three March days at the Boulder station.

Probabilistic forecasting provides a distribu-
tion over the prediction, this additional knowl-
edge of uncertainty estimates can provide advan-
tages over point forecasting. For example, know-
ing about future time periods of low and high
uncertainty in advance can be very useful in
planning plant maintenance [23]. Until recently,
probabilistic forecasting for solar energy had not
received as much attention as for wind energy,
as observed in [7]. In their work, [7] introduces
probabilistic benchmarks to evaluate probabilis-
tic methods, which we will utilize in this work.

Contributions We propose deep sequence learning for this longer lead-time (one week-ahead)
solar irradiance forecasting task, that provides point as well as probabilistic predictions. Overall, these
deep learning pipelines outperform several benchmarks from the literature including numerical weather
prediction (NWP) models and a machine learning-based probabilistic prediction method. The results
fall slightly behind the complete history persistence ensemble (Ch-PeEN) benchmark [7] in terms of
continuous ranked probability score (CRPS), but are better in terms of forecast sharpness.

2. Related Work
A variety of deep learning approaches have been proposed for learning from sequence data, some of
which have been applied in the solar energy domain. Recurrent neural networks (RNNs), unlike fully
connected neural networks, have the ability to capture temporal dependencies in sequences by incorpo-
rating feedback from previous time steps. Long Short-Term Memory (LSTMs) models are especially
useful for a time series data when the inputs can have longer dependencies. The works in [1, 14, 9,
6] show the potential of LSTMs for solar energy forecasting, and they outperform fully connected
networks and traditional machine learning models at short forecasting lead times. Convolution neural
network (CNN)-based models that use dilated and causal convolutions along with residual connections
(also referred to as Temporal CNNs) were designed specifically for sequential modeling [4, 15]. They
are autoregressive prediction models based on the recent WaveNet architecture [15]. Temporal CNNs
have recently been applied to forecasting day-ahead PV power output, outperforming both LSTMs and
multi-layer feed forward networks [13]. They are able to exploit a longer history in the time series,
enabling more accurate forecasts. In this work, we study a significantly longer forecast horizon that
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challenges the limits of NWP forecasting and is expected to have emerging applications as power sys-
tems evolve. We compare LSTMs, Temporal CNNs, Temporal CNNs with an added attention layer
[17], and the Transformer model [20].

Recently, [23] showed how probabilistic models such as Gaussian processes, neural networks with
dropout for uncertainty estimation, and NGBoost [8] compare when making short-term solar forecasts.
They explored post hoc calibration techniques for improving the forecasts produced by these models.
NGBoost or Natural Gradient Boosting algorithm [8] is a gradient boosting pipeline that is extended
to give a probabilistic distribution as an output (the parameters of the distribution are the regressed
outputs). We now consider NGBoost with a Gaussian output distribution, to be a machine learning
benchmark in this domain, since it showed superior performance for intra-hour and hourly resolution
forecasting [23]. Deep learning-based probabilistic prediction models are, however, yet to be fully
explored [21]. In this paper, we extend the deep learning point prediction models mentioned above
to yield predictions at multiple quantiles (see Figure 1), as quantile regression is a non-parametric
approach to obtain probabilistic forecasts [21, 17].

3. Data
We use open-source NOAA’s SURFRAD network (Surface radiation budget network for atmospheric
research) [2] that provides the ground-truth solar irradiance and meteorological measurements from
seven sites across the US in different climatic zones (https://gml.noaa.gov/grad/surfrad/). Models are
trained on measurements from the years 2016-2017, and then evaluated on the year 2018. The test data
(year 2018) is kept hidden and the rest of the data is split into training and validation sets (70/30 split).
Data is converted to an hourly resolution and only the day time values are considered for training and
testing of all models including benchmarks (for relevance to the domain, as in [7]). Days with less
than 24 hours of data points due to missing data were dropped. Following standard practice, we take a
ratio of the ground-truth Global Horizontal Irradiance (GHI) (Watts/m2) with respect to the “clear sky”
GHI value (these are irradiance estimates under cloud-free conditions, obtained from CAMS McClear
Service [11]), to produce a clearness index, such as in [23, 14, 7] that is used as the prediction label for
training. While trained on the clearness index, the models are evaluated on the GHI.

Important predictor variables available in the data, such as solar zenith angle, hour of the day, month
of the year, wind, pressure, temperature, and relative humidity, are included, along with the clearness
index at the hour (a total of 16 input variables overall). These inputs are scaled (standardized) before
the modeling procedure. All the sequence models take in a 3D input, where every row is a sequence
of input feature vectors corresponding to previous timesteps: we use a history of 12 × 7 past daylight
hours for all our models. Each row in the time series at hour h is assigned a label which is the clearness
index value at the hour h+one-week.

4. Methods
We focus on showing the potential of the following deep multi-variate sequence models: LSTM, Tem-
poral CNN, Temporal CNN with an attention layer, and Transformer, for point and probabilistic solar
irradiance forecasting. We compare them to the NgBoost method [8] that has been shown to outper-
form various probabilistic models for short-term solar forecasting [23], along with benchmarks from
the literature (as described in the next section). Hyperparameters were tuned on the validation dataset.

LSTM: We use a simple LSTM pipeline; a single hidden layer with a dimension of 25.
Temporal CNN (TCN): Temporal CNN consists of 1D dilated convolution filters and residual layers
that are responsible for learning long term dependencies efficiently [4, 13]. Figure 2 shows how dila-
tions help to increase (exponentially) the receptive field of a kernel. This makes the model capable of
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learning correlations between data points far apart in the past. The convolutions are also causal, mean-
ing that while convolving, outputs at time t only convolve with time t and earlier from the previous
layer. Our TCN architecture is comprised of 3 levels, size of the hidden layer is 25 and kernel size is 3
with dilation factors d = 1,2,4.
Temporal CNN with Attention: The Attention mechanism [3] has been used for sequential
modeling and time series prediction problems [16]. It has the ability to model dependen-
cies in long sequences without regard to their distance [20]. We add a self-attention layer
(adapted from [24]) on the convolution maps generated from the Temporal CNN network
and observe the prediction outcomes. This enables the model to “pay attention” to various
important parts of the feature maps that can help in making more accurate predictions.

Figure 2. Dilation in kernels [15, 5] .

Transformer: Transformers are architectures
that are comprised of only the attention lay-
ers, leaving out any recurrence or convolutions
entirely [20]. They have been adapted for the task
of time series forecasting as they work very well
with longer sequences [18, 22]. For this work,
we use the encoder structure of Transformers and
work with a single stack of two-headed self atten-
tion modules and other standard layers based on
[20].
Probabilistic prediction: For probabilistic fore-
casts, the above models are modified to output
predictions at multiple quantiles (from 5% to 95%). While the point models are trained with
mean-squared-error losses, their probabilistic counterparts are trained using quantile loss.

A fully connected layer at the end of each model is modified to produce either a single output
(for point) or multiple outputs (for probabilistic). Ngboost is trained with default parameters and 2000
estimators as in [23].

5. Evaluation
We provide the results of our experiments over all 7 SURFRAD stations for the test year (2018) in
Table 1 and Table 2. The benchmarks from the solar energy literature (derived from [7]) are:
Hourly Climatology (HC) is a model that assigns the irradiance at a certain hour in 2018, to be the
average of all irradiance values at the same hour of every day in the training data. For the probabilistic
forecast evaluation, we do not use the average but the cumulative distribution function (CDF) over
these values.
Complete History Persistence ensemble (CH-PeEN): CH-PeEN is used as a probabilistic prediction
benchmark, where for a certain forecast hour, we take a CDF over the clearness indices at the same
hour of every day from the training data and these are further converted to irradiance measures.
Numerical weather prediction (NWP) ensembles: We are using the ECMWF 51-member ensemble
as our NWP outputs. These members are updated only twice a day for one-week ahead forecasts, and
hence had to be repeated for the rest of the hours of the day (to be consistent with other forecasts).
For point forecasts, we take the ensemble mean, while for probabilistic prediction we take a empirical
CDF over them.
Smart Persistence (SP) is a model that assumes the clearness index (ratio of GHI/clear-sky GHI) at
time 𝑡+lead-time to be the same as at time 𝑡, and uses that to obtain the irradiance at 𝑡+lead-time. This
is a common benchmark from the short-term point forecasting literature, which we would not expect
to perform well at longer forecast lead times, but include for the sake of completeness.
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(a) (b)

Figure 3. Reliability and Sharpness plots at Penn State station.

Evaluation metrics: The evaluation metrics for point forecasting are the RMSE (root mean squared
error) scores of each model. For probabilistic forecasting, we use CRPS or Continuous Ranked Proba-
bility Score. CRPS is a widely used metric for evaluating probabilistic forecasts as it balances reliability,
resolution and sharpness which are other criteria to measure the quality of probabilistic outputs [10].
Intuitively, CRPS measures the area between the predicted and the observed CDF, the observed (true)
CDF being a step function at the observation [23]. The lower the CRPS, the better the model. To
evaluate our probabilistic forecasts, i.e., when our model outputs predictions at different quantiles
(𝜉 ∈ (0, 1)), the CRPS score can be expressed as an integral over quantile scores(𝑄𝑆) at all quantiles
(from [7]):

CRPS =

∫ 1

0

1
𝑇

𝑇∑︁
𝑡=1

𝑄𝑆𝜉 (𝑃−1 (𝜉, 𝑡), 𝑦(𝑡)) 𝑑𝜉 (1)

where 𝑦 is the observation, 1 is an indicator function, 𝑃 the predicted CDF distribution and 𝑇 the
number of data points. 𝑄𝑆 at a particular 𝜉 is defined as:

𝑄𝑆𝜉 = 2(1
{
𝑦(𝑡) ≤ 𝑃−1 (𝜉, 𝑡)

}
− 𝜉) (𝑃−1 (𝜉, 𝑡) − 𝑦(𝑡)) (2)

Reliability looks at the statistical consistency between the forecast distribution and observed distri-
bution, while sharpness looks at the concentration (narrowness) of the forecast [7, 10, 12]. These
characteristics are best observed with a visual analysis and we follow the work in [7] to visualize both
reliability and sharpness. The sharpness plot in Figure 3b is where we plot the average forecast width
at 10%,20%,30%,... central intervals. As we can see, sharpness doesn’t look at the observation, it just
considers the narrowness of the prediction interval. We also provide a reliability diagram (Figure 3a)
where we compare the proportion of the observations that lie within a given quantile output, vs the
quantile or nominal proportion itself (in an ideal scenario both are expected to be equal).

As we observe from Table 1, for the majority of the stations, all of our proposed deep learning mod-
els including LSTM, TCN, TCN+Attention and Transformers outperform Smart Persistence, Hourly
Climatology and NWP for point forecasts. LSTM, TCN and TCN+Attention perform very well for
point prediction. Ngboost performs comparably, or better, but falls behind in probabilistic evaluation.
The probabilistic prediction results in Table 2 shows that TCN (and TCN+Attention) obtain superior
results against all benchmarks except CH-PeEN in terms of the CRPS scores. Overall, LSTMs perform
equally well. Transformers however do not come close to the other proposed models for both point and
probabilistic evaluation (except for Desert Rock station). The CH-PeEN benchmark consistently per-
forms slightly better than the best performing probabilistic models. To investigate this, we refer to the
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SP HC NWP Ngboost LSTM TCN TCN+Attention Transformer

Sioux Falls, SD 222.34 220.14 288.84 177.01 205.22 190.9 199.63 229.67
Fort Peck, MT 203.11 225.12 285.92 161.11 149.14 150.64 158.73 172.94
Bondville, IL 269.6 230.99 298.91 196.78 210.83 205.32 211.21 242.24

Penn State, PA 235.57 225.67 280.43 187.04 192.71 199.02 193.69 227.08
Boulder, CO 242.01 220.52 329.78 177.21 184.68 182.56 187.59 213.74

Desert Rock, NV 146.83 196.15 379.63 110.76 104.26 110.75 137.52 117.52
Goodwin Creek, MS 252.01 230.06 327.24 184.37 184.49 186.61 187.75 210.28

Table 1. Results of the point forecasting pipeline. Results are in terms of RMSE scores (lower the better). Com-
parisons are made with the Smart Persistence (SP), Hourly Climatology (HC) and Numerical weather prediction
(NWP) benchmarks.

HC CH-PeEN NWP Ngboost LSTM TCN TCN+Attention Transformer

Sioux Falls, SD 126.04 87.75 218.42 106.41 93.96 94.03 98.14 153.29
Fort Peck, MT 129.37 77.37 217.76 97.83 80.05 76.65 77.83 95.59
Bondville, IL 131.79 100.84 225.15 119.07 117.79 107.87 110.68 134.31

Penn State, PA 126.9 97.74 199.22 114.38 101.37 107.43 103.3 131.04
Boulder, CO 126.46 88.65 256.79 102.91 92.42 91.47 91.25 114.77

Desert Rock, NV 112.46 44.78 311.33 55.13 45.21 46.43 56.43 51.11
Goodwin Creek, MS 130.4 95.91 249.16 111.05 95.26 98.6 100.63 120.91

Table 2. Results of the probabilistic forecasting pipeline. Results are in terms of CRPS scores. Comparisons
are made with the probabilistic Hourly Climatology (HC), Complete history persistence ensemble (CH-PeEN) and
Numerical weather prediction (NWP) benchmarks. The lower the CRPS, the better the model.

reliability and sharpness diagrams for the station Penn State in Figure 3. We clearly note all our pro-
posed models have better sharpness (as their curves are lower) in their forecasts than CH-PeEN, even
though it very reliable.

6. Discussion
Our encouraging results demonstrate that deep sequence learning algorithms hold promise for pro-
ducing improved week-ahead forecasts as they outperform most of the literature benchmarks. Our
methods also provide a distribution over the prediction, and this additional knowledge of uncertainty
can be extremely important in efficient power system and generator planning. Our proposed models
outperform a machine learning-based approach [8] in probabilistic forecasting.

SP HC Ngboost LSTM TCN TCN+Attention Transformer

Sioux Falls, SD 222.34 220.14 171.53 187.37 183.71 189.97 215.57
Fort Peck, MT 203.11 225.12 156.82 147.31 164.02 153.48 176.53
Bondville, IL 269.6 230.99 196.36 193.85 212.27 198.57 229.75

Penn State, PA 235.57 225.67 186.48 196.78 206.61 213.77 218.41
Boulder, CO 242.01 220.52 177.53 183.75 196.69 190.98 224.79

Desert Rock, NV 146.83 196.15 111.83 104.68 120.23 130.51 125.34
Goodwin Creek, MS 252.01 230.06 180.41 190.9 209.99 206.94 218.45

Table 3. Results of the point forecasting pipeline with NWP ensemble included as features in our models. Results
are in terms of RMSE scores.

While Temporal CNNs are a faster alternative to training LSTMs, they show an almost equal perfor-
mance in this application, especially for probabilistic forecasts. The Attention mechanism proved useful
when used in conjunction with TCNs but notably, not as much when we dispensed the convolution
layers and used a Transformer which is entirely based on attention.

Furthermore, as our part of our study, we wanted to look into the potential performance of our
existing deep learning models if they are provided with an additional input feature of the NWP model
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HC CH-PeEN Ngboost LSTM TCN TCN+Attention Transformer

Sioux Falls, SD 126.04 87.75 102.85 88.26 106.89 121.44 131.73
Fort Peck, MT 129.37 77.37 97.2 75.03 83.51 81.76 95.77
Bondville, IL 131.79 100.84 119.29 109.3 113.11 113.61 131.93

Penn State, PA 126.9 97.74 114.35 99.61 118.22 117.47 135.36
Boulder, CO 126.46 88.65 103.16 92.2 103.03 100.83 120.93

Desert Rock, NV 112.46 44.78 55.15 44.02 47.01 60.04 48.59
Goodwin Creek, MS 130.4 95.91 112.11 96.13 121.14 120.4 128.56

Table 4. Results of the probabilistic forecasting pipeline with NWP ensemble included as features in our models.
Results are in terms of CRPS scores.
ensemble. Table 3 and 4 provide the results obtained when the 51 member ensemble is incorporated
into our models. With the poor temporal resolution of these NWP predictors, we did not expect to see
a huge performance improvement in the forecasts. We do observe an overall slight enhancement in
performance with LSTM but not a clear trend with the TCN, TCN+Attention and Transformer models.
Further investigation is left to future work.

7. Conclusion
We provide a quantitative study and demonstrate the valuable potential of deep learning methods for one
week-ahead solar irradiance forecasting, especially when such longer-term predictions are ill-served
by existing NWP models. Week-ahead and longer forecasts, coupled with uncertainty estimates, can
be very significant for future power systems operations when efficient energy planning will become
increasingly important with greater shares of renewable energy penetrating into power systems. We
hope this paper will encourage future work leveraging machine learning for long-term point and prob-
abilistic forecasting, not only for solar power, but also for other renewables and applications mitigating
climate change.
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